DNA-based optomechanical molecular motor.

نویسندگان

  • Martin McCullagh
  • Ignacio Franco
  • Mark A Ratner
  • George C Schatz
چکیده

An azobenzene-capped DNA hairpin coupled to an AFM is presented as an optically triggered single-molecule motor. The photoinduced trans to cis isomerization of azobenzene affects both the overall length of the molecule and the ability of the DNA bases to hybridize. Using a combination of molecular dynamics simulations and free energy calculations the unfolding of both isomers along the O5'-O3' extension coordinate is monitored. The potentials of mean force (PMFs) along this coordinate indicate that there are two major differences induced by photoisomerization. The first is that the interbase hydrogen bond and stacking interactions are stable for a greater range of extensions in the trans system than in the cis system. The second difference is due to a decreased chain length of the cis isomer with respect to the trans isomer. These differences are exploited to extract work in optomechanical cycles. The disruption of the hairpin structure gives a maximum of 3.4 kcal mol(-1) of extractable work per cycle with an estimated maximum efficiency of 2.4%. Structure-function insights into the operation of this motor are provided, and the effect of the cantilever stiffness on the extractable work is characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Force Measurement in Bistable Optomechanical System

One of the main milestones in the study of opto-mechanical system is to increase the sensitivity of weak forces measurement up to the standard quantum limit. We have studied the detection of weak force under a bistable condition in red detuned regime. In this case, dynamics of the system behaves asymptotically similar to stationary state and applying external force affects phase and fluctuation...

متن کامل

Phonon routing in integrated optomechanical cavity-waveguide systems

The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this interaction to much larger, even human-sized mechanical objects. Going beyond the canonical Fabry-Perot cavity with a movable mirror, here we explore a n...

متن کامل

Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor.

F0F1-ATPase within chromatophore was constructed as a molecular motor biosensor through ε-subunit antibody-biotin-streptavidin-biotin-AC5-Sulfo-Osu system. Based on probe-DNA specific binding, DNA of several foodborne pathogens Listeria monocytogenes, Salmonella typhimurium, Vibrio parahaemolyticus and Vibrio cholerae was specifically captured by F0F1-ATPase molecular motor biosensors. Loads of...

متن کامل

Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification.

It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device, it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal-to-noise ratio works by deamp...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 10  شماره 

صفحات  -

تاریخ انتشار 2011